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save memory. Computational comparative study demonstrates that the proposed method outperforms 

the two current best exact methods (ULINO and branch, price and remember algorithm) by achieving 

259 optimal solutions for Scholl’s well-known 269 benchmark problems. The proposed method also 
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Nomenclature 

SALBP : The simple assembly line balancing problem 

SALBP-1 : Type-1 SALBP (the aim is to minimize the number of workstations given the cycle time) 

UALBP : The U-shaped assembly line balancing problem 

UALBP-1 : Type-1 UALBP (the aim is to minimize the number of workstations given the cycle time) 

ULINO : The branch and bound procedure proposed by Scholl and Klein [16] to solve UALBP-1 

EUREKA : The branch and bound procedure proposed by Hoffmann [5] to solve SALBP-1 

FABLE : The branch and bound procedure proposed by Johnson [6] to solve SALBP-1 

OptPack : The branch and bound procedure proposed by Nourie and Venta [7] to solve SALBP-1 

SALOME : The branch and bound procedure proposed by Scholl and Klein [8, 9] to solve SALBP-1 

BBR : The branch, bound and remember algorithm 

BPR : The branch, price and remember algorithm 

MHH : Modified Hoffman heuristic 

CBFS : Cyclic best-first search strategy 

BPLB : Bin packing lower bound 

DFS : Depth-first search strategy 

BFS : Best-first search strategy 

BrFS : Breadth-first search strategy 

BBR_BSD : The BBR method utilizing BFS and dominance rule in Scholl and Klein [16] without renumbering 

BBR_BND : The BBR method utilizing BFS and new dominance rule without renumbering 

BBR_CSD : The BBR method utilizing CBFS and dominance rule in Scholl and Klein [16] without 

renumbering 

BBR_CND : The BBR method utilizing CBFS and new dominance rule without renumbering 

BBR_BNP : The BBR method utilizing BFS and new dominance rule with renumbering tasks based on 

positional weight and operation time 

BBR_BNO : The BBR method utilizing BFS and new dominance rule with renumbering tasks based on 

operation time 
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BBR_CNP : The BBR method utilizing CBFS and new dominance rule with renumbering tasks based on 

positional weight and operation time 

BBR_CNO : The BBR method utilizing CBFS and new dominance rule with renumbering tasks based on 

operation time 

RPD : Relative percentage deviation 

MEJR : The modified extended Jackson rule 

NSPR : The no-successors and no-predecessors rule 

 

1. Introduction 

Assembly line balancing is an extensively studied optimization problem, which has great implications 

in modern industry [1, 2]. This problem has many variants as surveyed by Battaïa and Dolgui [2], and 

the basic edition of this problem is the simple assembly line balancing problem (SALBP). SALBP can 

be, without loss of generality, defined as the problem of assigning a set of    tasks 

(                ) to a set of stations with the objective of optimizing one or more performance 

criterion (i.e. minimizing the cycle time and/or the number of stations). Each task (task i) has a 

pre-determined, fixed and non-negative operation time (  ), and the capacity constraint (caused by 

cycle time) and precedence relationship constraint must be satisfied. Specifically, the total operation 

time of assigned tasks on each station should be less than or equal to a given time, referred to as cycle 

time (  ). A task can be assigned upon all of its predecessors (if any) have been allocated to the former 

station or the former position in the same station. In other words, the immediate (all) predecessors of 

task i, denoted as   (  
 ), must be allocated to the former station or the former position in the same 

station.  

As a variant of SALBP, U-shaped assembly line balancing problem (UALBP) draws increasing 

attention from both researchers and engineers due to higher flexibility and productivity [3]. Regarding 

UALBP with the objective of optimizing the station number, a set of    tasks is divided and assigned 

to a set of stations comprised of the entrance side and exit side. The main feature that differentiates 

UALBP from SALBP is that a task is assignable when all its predecessors or successors have been 

allocated. 

There are tremendous methods to address the assembly line balancing problems, which can be divided 

into three categories [2, 4]: exact methods, heuristic methods and meta-heuristic methods. Regarding 

the exact methods for SALBP, there are many published methods: EUREKA [5], FABLE [6], OptPack 

[7], SALOME [8, 9], dynamic-programming heuristic [10], and branch, bound and remember (BBR) 

algorithm [11, 12], to cite just a few. Among them, BBR algorithm is the best performer which finds all 

the optimal solutions of Scholl’s well-known 269 benchmark problems. Regarding the heuristic method, 

the Hoffmann heuristic or its variants based on the incomplete enumeration are the best performers [11, 

13, 14]. Meta-heuristics comprise the majority of the published methods [2], and hybrid beam search 

and ant colony algorithm are the best performers [15].  

As for the applied methods to solve UALBP, there are two exact methods: ULINO [16] and branch, 

price and remember (BPR) algorithm [17]. BPR is the best exact method, and this method obtains 255 

optimal solutions of Scholl’s 269 benchmark instances. Regarding the meta-heuristic method, there are 

many methods to optimize the number of stations, e.g. simulated annealing algorithm [18], ant colony 

optimization [19, 20], station-oriented ant colony optimization [21]. The recently published 

station-oriented ant colony optimization [21] is the best metaheuristic, which produces 255 optimal 

solutions of Scholl’s benchmark instances and outperforms ULINO in 21 cases. 

As the research on UALBP using exact methods is limited and BBR method is quite effective for 
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SALBP, this research extends the BBR method to UALBP and improves the BBR method to produce 

better results, which is the main motivation of this paper. Specifically, this research presents three 

major contributions as follows. Firstly, BBR method is extended and improved to solve UALBP. This 

method utilizes modified Hoffman heuristic to achieve high-quality upper bound and cyclic best-first 

search strategy (CBFS) to find the optimal solution. This research also provides several improvements 

to enhance the performance of UALBP: two new dominance rules, renumbering the tasks when 

generating the station loads, new criterion to select the most promising sub-problem and limiting the 

number of sub-problems at each depth. Secondly, a comprehensive study is carried out where eight 

BBR methods with different configurations are evaluated on Scholl’s 269 benchmark instances and the 

new 6825 instances in 2013 by Otto and Otto [22]. These BBR methods utilize different dominance 

rules and search strategies to test the performance of these improvements introduced. Thirdly, tested 

BBR methods outperform the current ULINO and BPR by achieving many new optimal solutions or 

upper bounds. For instance, the optimal solution of Scholl’s instance with 297 tasks and a cycle time of 

1422 (which has been open for almost 20 years) is achieved for the first time. The proposed method 

also finds 41 new optimal solutions when solving the new data set.  

The remainder of this paper is organized as follows. Section 2 provides a description of the considered 

problem, and Section 3 presents the details of the proposed BBR algorithm. The computational study is 

carried out in Section 4 and the performance of several BBR methods and two published exact methods 

are compared. Finally, Section 5 concludes the research and provides several future research directions.  

 

2. Problem description 

UALBP with station number minimization criterion can be described as follows: a set of    tasks is 

portioned into the entrance side and exit side of the minimum stations while satisfying the cycle time 

and precedence relationship constraints. To satisfy the cycle time constraint, the total operation time of 

tasks in the entrance side and exit side of a station must be less than or equal to the cycle time. With 

regard to the precedence relationship constraint, a task is assignable when all its predecessors or 

successors have been assigned. Specifically, a task can be allocated to the entrance side when all its 

predecessors have been allocated. On the other hand, a task can be allocated to the exit side when all its 

successors have been allocated. 

This section illustrates an example in Fig.1, where precedence relationships among 11 tasks are 

presented. In this figure, the numbers in the circles denote the tasks and the numbers over the circles 

indicate the operation times of the tasks (in time units). The tasks in the entrance side and exit side have 

reverse precedence relationships, where the precedence relationship in the entrance side is the same to 

that in SALBP.  
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Fig.1 The precedence relationships diagram for a U-shaped assembly line balancing problem 

Figure 2 illustrates the detailed task assignment of an example solution with a cycle time fixed to 10 
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(time units). It is clear that a station is divided into two portions: entrance side and exit side. When 

there are tasks allocated to both entrance side and exit side, a worker first operates the tasks on the 

entrance side and moves to the exit side and operate the assigned tasks. This is repeated between the 

entrance and exit sides in each cycle. The predecessors of a task in the entrance side must be allocated 

to the former station or the former position of the same station, e.g. task 1 which is the predecessor of 

task 3 is allocated to station 1 before the station in which task 3 is allocated. On the contrary, the 

predecessors of a task in the exit side must be allocated to the latter station or the latter position of the 

same station, e.g. task 11 is allocated to station 1 and its predecessor task 9 is allocated to station 2. It is 

also observed that, if a pair of tasks with precedence relationship in between is allocated to the entrance 

side and exit side respectively, the predecessor is allocated to the entrance side and the succeeding task 

is allocated to the exit side. 

 

Station 1 Station 2 Station 4 Station 5 Station 6

1

Entrance side

3 2 4 5 6 7

810911

Exit side
 

Fig.2 Detailed task assignment for the illustrated example 

 

3. The proposed BBR algorithm 

BBR algorithm is an exact method which inherits the main features of branch and bound and dynamic 

programming [11]. This method has produced state-of-the-art results for SALBP. BBR method stores 

and remembers all the sub-problems generated during the search process, and then utilizes the 

memory-based dominance rule to eliminate the duplication of sub-problems.  

Due to its superiority, this research extends the BBR method to solve the UALBP. Nevertheless, the 

search space for UALBP is much larger than that for SALBP and there are more sub-problems in each 

depth. Initial experiments demonstrate that the simple adaption of BBR might terminate due to out of 

memory issue when solving large-size instances. Hence, this research also develops several 

improvements: new pruning rules and dominance rules, renumbering the tasks in generating the station 

loads, new criterion to select the most promising sub-problem and limiting the number of sub-problems 

at each depth. The main procedure and segments of BBR are explained as follows.  

 

3.1 The procedure of the proposed method  

The procedure of the proposed BBR method is demonstrated as follows, where LB1, LB2, LB3 and 

BPLB are the lower bounds (to be explained in Section 3.4). As illustrated in Algorithm 1, this 

procedure consists of three phases following Sewell and Jacobson [11] and Morrison, Sewell [12].  

In Phase I, the BBR method utilizes the modified Hoffman heuristic (MHH), proposed by Sewell and 

Jacobson [11], to achieve a high-quality upper bound (UB). Recall that MHH is an improved edition of 

the original Hoffman heuristic proposed by Hoffman [14]. MHH is capable of achieving much better 

upper bound and hence it is selected to achieve high-quality upper bounds. If UB is equal to the global 

lower bound at the root (LBroot), the optimal solution is obtained and BBR method terminates. 

Otherwise, BBR executes Phase II to attempt to find the optimal solution using CBFS. In this phase, 

BBR stores all the sub-problems searched so far and eliminates the dominated station loads using 

pruning rules and dominance rules. If Phase II cannot prove the optimality of the achieved solution 
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within given computational time limit, Phase III is employed to attempt to prove the optimality of the 

found solution using breadth-first search (BrFS). Recall that Phase III does not take effect in our initial 

experiments, but this research preserves this phase in the case of some special circumstances.  

 

Algorithm 1: BBR algorithm 

% Phase I 

Step 1: Achieve UB by MHH.  

% End of Phase I 

Step 2: Obtain global lower bound at the root using                             . 

Step 3: If          , terminate; otherwise, go to Step 4. 

% Phase II 

Step 4: Run CBFS and update UB when smaller UB is achieved. If the termination criterion is 

satisfied, terminate.  

% End of Phase II 

Step 5: If           or termination criterion is satisfied, terminate; otherwise, go to Step 6. 

% Phase III 

Step 6: Run BrFS and update UB when smaller UB is achieved. If           or termination 

criterion is satisfied, terminate this procedure. 

% End of Phase III 

 

3.2 Branching  

This section illustrates the implemented branching which partitions the original problem into smaller 

sub-problems. Each partial solution is referred to as                   , where A is the assigned 

tasks to former m stations, U denotes the unassigned tasks (     ) and    is the set of tasks 

allocated to station m (     
 
   ). A partial solution must satisfy the precedence constraint and cycle 

time constraint. Specifically, the predecessor h of task i must be allocated ahead of task i in the 

entrance side (     
 
    when      in the entrance side) and task i must be allocated ahead of the 

predecessor h in the exit side (     
 
    when      in the exit side). Regarding the cycle time 

constraint, the total operation time on every station should not be larger than a given cycle time 

(       
               ).  

There are two popular branching methods: task-oriented branching [6, 7] and station-oriented 

branching [5, 8, 9, 11, 12]. Task-oriented branching creates sub-problems by allocating a task to the 

current station or to the next station when it cannot be assigned to the current station. Station-oriented 

branching obtains a complete load and allocates it to the first available station. Both branching methods 

have been applied to SALBP, but only station-oriented branching is applied to UALBP [16, 17]. 

Following Scholl and Klein [16] and Sewell and Jacobson [11] and many others, this research employs 

the station-oriented branching due to its superiority as proved in published papers. Inspired by the task 

renumbering in Scholl and Klein [16], this research also renumbers the tasks to obtain the most 

promising load as early as possible. The tasks are renumbered in the enumeration as that the tasks with 

both larger positional weight and larger operation time are moved to the former position in the 

assignable task set when more than one task can be allocated to the entrance side. If more than one task 

can be allocated to the exit side, the tasks with both larger reverse positional weight and larger 

operation time are moved to the former position in the assignable task set. This aforementioned method 

is referred to as renumbering the tasks using positional weight and operation time in Table 1 in Section 

4. The method in which tasks with larger operation time are moved to the former position is referred to 
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as renumbering the tasks using operation time. The proposed BBR method utilizes the first approach to 

renumber the tasks, but the second approach (based on task operation time) will also be tested in 

Section 4.  

 

3.3 Upper bounds  

For BBR methods, upper bound is an important factor and a high-quality upper bound can increase the 

search speed and reduce the running time. This research extends the MHH proposed by Sewell and 

Jacobson [11] to UALBP. The MHH procedure is illustrated in Algorithm 2. 

 

Algorithm 2: MHH procedure 

Step 1: If all tasks have been assigned, terminate. Otherwise, go to Step 2.  

Step 2: Open a new station.  

Step 3: Generate a set of possible station loads (set to 1,000).  

Step 4: Select the station load with the maximum value of                         

                        .  

Step 5: Assign this station load to the current open station and go to Step 1. 

 

In this algorithm, FS (BS) is the set of tasks allocated to the current new station in the forward direction 

(backward) direction.   (  
 ) is the set of immediate (all) successors of task i and   (  

 ) is the set of 

immediate (all) predecessors of task i. The term    denotes the positional weights of tasks in the 

forward (backward) direction (             
 ) and     is the reverse positional weights of tasks 

in the backward direction (              
 ). The rational of the formula in Step 4 is clarified as 

follows: the term    preserves large workload and encourages a full workload,      (     ) 

preserves the tasks whose successors (predecessors) have a larger total operation time,        (      ) 

encourages tasks which make more tasks assignable and    encourages the tasks with larger 

operation times.  

There are three parameters,  ,   and   , to be determined. Based on the work by Sewell and Jacobson 

[11] and Morrison, Sewell [12] this research sets the values of these parameters as follows:     

                           , and                     . The proposed MHH runs 100 times 

utilizing each combination of these factors and the minimum station number among them is regarded as 

the upper bound by MHH.   

 

3.4 Lower bounds 

The BBR method utilizes three well-known lower bounds (LB1, LB2 and LB3) [8] and one 

bin-packing lower bound (BPLB) [11, 12] on SALBP. LB1 and LB2 are defined in Equation (1) and 

Equation (2), respectively, and LB3 is defined in Equations (3)-(4). Detailed description of these lower 

bound rules refers to Scholl and Klein [8] and Scholl and Klein [16]. 

                 (1) 

                     
               

 
  (2) 

              (3) 
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   if           

     if           

     if                  

     if         

   (4) 

 

BPLB is a new lower bound found by slacking the UALBP into the bin packing problem. As the bin 

packing problem is already NP-hard, this research utilizes a separate branch and bound solver to 

achieve the optimal solution for the bin packing problem as presented by Sewell and Jacobson [11]. To 

avoid tremendous time to obtain BPLB, this separate branch and bound solver terminates when an 

optimal solution is achieved or computational time exceeds one second. This BPLB is quite effective in 

proving the optimality for many cases, and detailed description of BPLB is first presented by Sewell 

and Jacobson [11]. When applying these four lower bounds, LB1, LB2 and LB3 are first computed. If 

the maximum of them is greater than or equal to the incumbent UB, this sub-problem is pruned. 

Otherwise, BPLB is computed and the sub-problem is pruned when BPLB is greater than or equal to 

the incumbent UB.  

 

3.5 Dominance rules 

Dominance rules are applied to prune the dominated sub-problem. Scholl and Klein [16] employ three 

dominance rules: maximum load rule, modified Jackson dominance rule and tree dominance rule as 

follows. 

Maximum load rule: A partial solution is pruned if this partial solution contains a station load    and 

a task i can be allocated to station j without the violation of cycle time constraint and precedence 

relationship constraint. 

Modified Jackson dominance rule: For a given partial solution, a sub-problem containing this partial 

solution is pruned if 1) there is a task i assigned to the last station and an unallocated task h such that 

task i is potentially forward dominated by task h (      and   
    

 ), and 2) task h can replace task 

i without violation of cycle time constraint and precedence relationship constraint. For a given partial 

solution, a sub-problem containing this partial solution is pruned if 1) there is a task i assigned to the 

last station and an unallocated task h such that task i is potentially backward dominated by task h 

(      and   
    

 ), and 2) task h can replace task i without the violation of cycle time and 

precedence relationship constraints. Recall that, task i and task h do not dominate each other if they 

have identical operation times and the same set of predecessors in the forward direction or successors 

in the backward direction.  

Tree dominance rule: A partial solution is equivalent to another one if they contain the same set of 

tasks with different sequence in task assignment. This rule stores the minimum station numbers and 

corresponding subsets of tasks assigned to stations in partial solutions searched so far. The sub-problem 

containing this partial solution is pruned if this partial solution is equivalent to a subset of tasks stored 

and requires no smaller station number. 

Yolmeh and Salehi [17] replaced the tree dominance rule with a memory-based dominance rule in 

implementing BPR algorithm. In this rule, all the sub-problems need to be stored using a hash table. 

This rule is clarified as follows. 

Memory-based dominance rule: The current sub-problem is pruned if the assigned task set of the 

current sub-problem is equivalent to the task set of a previously identified sub-problem, and the current 

sub-problem requires no smaller station number.  

Both Scholl and Klein [16] and Yolmeh and Salehi [17] utilize the modified Jackson dominance rule, 



  

9 

whereas there might be one possible drawback. Suppose that task i in a partial solution is allocated to 

the entrance side and task i is potentially backward dominated by unassigned task h. This modified 

Jackson dominance will prune the original sub-problem even though task i is not potentially forward 

dominated by unassigned task h. This situation might lead to achieving wrong optimal solutions, and 

thus this modified Jackson dominance also adds that task i and task h do not dominate each other if 

they have identical operation times and the same set of predecessors in the forward direction or 

successors in the backward direction. The added limit somewhat repairs the possible drawback. In fact, 

the preliminary experiments demonstrate that the modified Jackson dominance rule without the added 

limit produces wrong optimal solutions with larger station number than that of the true optimal solution. 

However, the modified Jackson dominance rule with the added limit achieves or proves no wrong 

optimal solutions.  

Different from the aforementioned modified Jackson dominance, the proposed BBR employs two new 

dominance rules modified from those in SALBP [11] as well as maximum load rule and memory-based 

dominance rule.  

Modified extended Jackson rule: For a given partial solution, a sub-problem containing this partial 

solution is pruned if 1) there is a task i assigned to the entrance side of the last station and an 

unallocated task h such that task i and task h have no precedence relationship,       and   
    

 ; 

and 2) task h can be assigned to the entrance side to replace task i without the violation of cycle time 

constraint and precedence relationship constraint. For a given partial solution, a sub-problem 

containing this partial solution is pruned if 1) there is a task i assigned to the exit side of the last station 

and an unallocated task h such that task i and task h have no precedence relationship,       and 

  
    

 , and 2) task h can be assigned to the exit side to replace task i without the violation of cycle 

time constraint and precedence relationship constraint. 

The no-successors and no-predecessors rule: The current sub-problem is pruned if 1) the tasks on the 

entrance side of the last station in a partial solution have no successors, 2) the tasks on the exit side of 

the last station in a partial solution have no predecessors, 3) and there exists an unassigned task which 

can be allocated to the entrance (exit) side and has at least one successor (predecessor). 

Clearly, the maximum load rule will never prevent the discovery of the optimal solution. The 

memory-based dominance rule is applied to two already generated sub-problems to preserve one 

sub-problem with equivalent or smaller station number, and thus memory-based dominance rule will 

never prune an optimal solution. The only remaining dominance rules are modified extended Jackson 

rule and the no-successors and no-predecessors rule, and the correctness and the compatibility of these 

two dominance rules are discussed in Appendix A. 

 

3.6 Search strategy 

The order in which sub-problem is selected to be explored has a great impact on the computational time 

of a branch and bound algorithm. In the literature, there are four main search strategies to determine 

this order: depth-first search strategy (DFS) [8], best-first search strategy (BFS) [17], BrFS and CBFS 

[11, 12].  

There are variations of DFS strategies [5-9], and among them the SALOME [8, 9] exhibits the best 

performance in solving SALBP. BFS selects the most promising sub-problem from a set of 

sub-problems. For instance, Yolmeh and Salehi [17] selects the sub-problem with a higher number of 

stations or the sub-problem with lower generation based lower bound. The sub-problem selection 

method has impact on the overall speed of achieving a complete solution, and it is demonstrated that 

the BPR with BFS strategy outperforms the ULINO with DFS in solving UALBP. BrFS strategy 
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generates all the sub-problems at depth 1, and then at depth 2, and this procedure is repeated until the 

optimal solution is found. BrFS is heavy and it might not achieve a complete solution within a time 

limit, but BrFS could be utilized to prove the optimality of some special cases.  

CBFS strategy is a hybrid method between DFS and BFS. BBR with CBFS produces the 

state-of-the-art results for SALBP. In this method, CBFS selects the most promising sub-problem at 

depth 1 and generates a set of new children for depth 2, and then it selects the promising sub-problem 

at depth 2 and generates a set of new children for depth 3. This procedure is terminated upon the 

deepest level is reached and then it comes back to depth 1 and this cycle is repeated. Regarding the 

selection of the sub-problem, they define              , where                   ,   is 

the total idle in the former m stations and   is an input parameter set to 0.02. The sub-problem with 

minimum value of measure      is selected to be explored.  

Due to the superiority of CBFS in SALBP, this research also extends CBFS to UALBP with two 

improvements, denoted as modified CBFS, as follows. Firstly, the sub-problem at depth l is not 

selected when there are plenty of sub-problems (set to 10,000) at depth l+1. Secondly, this research 

employs a new sub-problem selection indicator by hybridizing that with Sewell and Jacobson [11] and 

Yolmeh and Salehi [17] as shown in Equation (5). In this equation, LB(U) is the lower bound of the 

unassigned tasks obtained using LB1, LB2, LB3 and BPLB. This expression ensures that the 

sub-problem with smaller lower bound is selected primarily and the sub-problem with less idle time on 

the former m stations is selected secondarily and the larger number of remained tasks is preferred when 

they have the same lower bound.  

                         (5) 

 

Algorithm 3: Modified CBFS 

Initialize level 0 by storing the root problem; l:=1; 

While (unexplored sub-problems exist) 

While (the number of sub-problems at depth l+1≥10,000) 

l := l+1; 

Endwhile 

Select a sub-problem at depth l with the minimum value of     ; 

Store all the non-dominated children of this selected best sub-problem at depth l+1; 

l := l % (UB-1); 

Endwhile 

 

The first improvement is applied to attempt to accelerate the search process. In our initial experiments, 

there are too many sub-problems in the former depths and only almost          time is utilized at 

one latter depth. This modification ensures that more computational effort is applied for latter depths to 

achieve the optimal solution fast while preserving enough sub-problems in the former depths. The 

second improvement is inspired by that the sub-problems in the same depth might have different lower 

bounds when solving large-size instances. Clearly, the smaller lower bound has higher chance to find 

better UB and hence increases the search speed by pruning more sub-problems.  

 

4. Computational study 

This section utilizes two benchmark datasets to test the performance of the proposed methodology: the 

well-known 269 benchmark problems utilized by Scholl and Klein [16] and the new data set provided 
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by Otto and Otto [22] in 2013. The new data set is divided into four types of problems: small-size 

problem set with 20 tasks, medium-size problem set with 50 tasks, large-size problem set with 100 

tasks and very large-size problem set with 1000 tasks. There are 525, 5250, 525 and 525 instances in 

small-size, medium-size, large-size and very large-size problem sets, respectively. These rich 

benchmark datasets provide the opportunity of observing the performance of the tested algorithms for 

various size instances, and also make the achieved findings more convincing.  

To observe the performance of the proposed improvements in the previous section, this section 

implements several variants of the BBR algorithm as specified in Table 1. The first column refers to the 

abbreviation of the tested algorithms, where appropriate suffixes are used to highlight the search 

strategy, dominance rule and the sequence of the tasks in enumeration employed by each BBR method. 

Note that BBR_CNP refers to the proposed BBR method. 

 

Table 1 Tested BBR algorithms 

Algorithms  Search strategy Dominance rule The sequence of the tasks in enumeration 

BBR_BSD BFS Dominance rule in Scholl 
and Klein [16]  

Don’t renumber the tasks  

BBR_BND BFS New dominance rule  Don’t renumber the tasks  

BBR_CSD CBFS Dominance rule in Scholl 
and Klein [16]  

Don’t renumber the tasks  

BBR_CND CBFS New dominance rule  Don’t renumber the tasks  

BBR_BNP BFS New dominance rule  Renumber the tasks using positional weight 
and operation time  

BBR_BNO BFS New dominance rule  Renumber the tasks using operation time  

BBR_CNP CBFS New dominance rule  Renumber the tasks using positional weight 

and operation time  

BBR_CNO CBFS New dominance rule  Renumber the tasks using operation time  

 

All the implemented algorithms utilize backtracking rule to save memory and propose the MHH to 

achieve upper bound in Phase I, where the total number of generated loads in one station is limited to 

1,000. Following Sewell and Jacobson [11], the number of generated full loads from one sub-problem 

in Phase II is limited to 10,000 to avoid tremendous time in selecting a load and much memory to store 

the loads for one station. In Phase II, all the algorithms select the sub-problem   with the smallest 

value of     . Specifically, all the algorithms utilizing cyclic best-first limit the number of 

sub-problems in a depth up to 1,000 and the sub-problems at a depth is not selected for search when 

there are greater than or equal to 10,000 sub-problems at a latter depth. 

These tested methodologies are compared with other two exact methods: ULINO in Scholl and Klein 

[16] and BPR in Yolmeh and Salehi [17], where the results by these two methods are taken from the 

published papers directly. Recall that ULINO and BPR are the only applied exact methods for 

U-shaped assembly line balancing, and BPR is only method which has solved the new data set in 2013. 

The tested algorithms are implemented in Microsoft Visual Studio 2015, and the experiments are run 

on a personal computer with Intel(R) Core(TM) i7-4790S 3.20GHZ CPU and 8.00 GB of available 

memory. All these methods terminate when the optimal solution is achieved or the computation time 

reaches to 500 seconds as in Scholl and Klein [16] and Yolmeh and Salehi [17]. 

 

4.1 Experimental results on Scholl data set 

This section evaluates the performances of the algorithms on Scholl data set and reports the achieved 

results in Table 2 (see Appendix B for the detailed results). In Table 2, the second column (#OPT found) 
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denotes the number of achieved optimal solutions, among which some might not be proved optimal by 

the corresponding algorithm. The third column (#OPT verified) gives the number of achieved optimal 

solutions which have been proved to be optimal by the corresponding algorithm. The relative 

percentage deviation (RPD) is also employed to measure the gap between the LB and the achieved 

upper bound (UP) using Equation (6).  

                   (6) 

The average relative percentage deviation (RPD-Avg) and the maximum relative percentage deviation 

(RPD-Max) are presented in the fourth and fifth columns, respectively. The last three columns compare 

the tested algorithms with ULINO: the number of cases when the algorithm achieves better solution 

than ULINO (Better than ULINO), same solution to ULINO (Same to ULINO), and worse solution than 

ULINO (Worse than ULINO). 

From Table 2, it is observed that ULINO is the worst performer, which finds 238 optimal solutions, and 

BPR is the second worst performer which finds 255 optimal solutions. On the contrary, all the 

implemented BBR algorithms produce better results, among which the BBR_CNP is the best performer 

with 259 optimal solutions. BBR_BNP and BBR_BNO are the second-best performers with 258 

achieved optimal solutions. Regarding the RPD-Avg, BBR_CNP is also the best performer and 

BBR_BNP and BBR_BNO are the second-best performers. 

Table 3 presents the CPU times by these algorithms when solving all the instances, where the average 

value, the standard deviation, the minimum value and the maximum value are presented in the second, 

third, fourth and fifth columns, respectively. Clearly, BBR_CNP consumes the smallest average 

running time of 20.38s with the smallest standard deviation of 97.62, and BBR_BNP consumes the 

second smallest average running time of 22.73s with the second smallest standard deviation of 102.83. 

Among the remaining methods, ULINO consumes the largest average running time and BPR has the 

second largest average running time.  

 

Table 2 Overall results obtained by the algorithms 

Algorithm 
#OPT 
found 

#OPT 
verified 

RPD-Avg RPD-Max 
Better than 

ULINO 
Same to 
ULINO 

Worse than 
ULINO 

ULINO 238 233 0.52  10.00  - - - 

BPR 255 255 0.26  7.14  17 252 0 
BBR_BSD 257 257 0.22  6.67  19 250 0 
BBR_BND 257 257 0.22  6.67  19 250 0 
BBR_CSD 257 257 0.22  6.67  19 250 0 
BBR_CND 257 257 0.22  6.67  19 250 0 
BBR_BNP 258 258 0.20  7.69  20 249 0 
BBR_BNO 258 258 0.20  7.69  20 249 0 
BBR_CNP 259 259 0.18  7.69  21 248 0 
BBR_CNO 257 257 0.21  7.69  19 250 0 

*Best in bold.  

Table 3 Running times by algorithms 

Algorithm Average (s) Standard deviation  Minimum (s)  Maximum(s) 

ULINO 82.09 - - - 
BPR 34.66  120.79  0.01  815.07  
BBR_BSD 23.11  103.59  0.00  501.01  
BBR_BND 23.01  103.60  0.00  504.38  
BBR_CSD 24.62  106.26  0.00  501.00  

BBR_CND 23.92  104.70  0.00  525.15  
BBR_BNP 22.73  102.83  0.00  634.39  
BBR_BNO 24.48  106.89  0.00  603.93  
BBR_CNP 20.38  97.62  0.00  608.70  
BBR_CNO 23.50  105.02  0.00  577.59  

*Best in bold.  
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Recall that some maximums of running times in Table 3 exceed 500 seconds. This is because the 

termination criterion is checked after generating 10,000 station loads for a selected sub-problem, as 

explained in Section 3.1. Also, the consumed time to utilize the dominance rules or calculate the lower 

bounds might be large, especially when BPLB is used. Hence, it is normal that the running time is 

larger than the given time limit, which is 500 seconds. Recall that, if we check whether the termination 

criterion is satisfied after generating each station load, a lot of time will be wasted. Still, for most cases 

that are not solved optimally, the running time is close to 500 seconds and there are only few special 

cases with more than 600 seconds of running time. 

Table 4 presents the detailed results on challenging instances, which ULINO is not capable to find the 

optimal solution. It is observed that BPR and BBR algorithms achieve many better solutions. As 

presented in Table 2, BPR, BBR_BSD, BBR_BND, BBR_CSD, BBR_CND, BBR_BNP, BBR_BNO, 

BBR_CNP and BBR_CNO outperform ULINO in 17, 19, 19, 19, 19, 20, 20, 21 and 19 cases, 

respectively. Specifically, for Arcus 2 with 111 tasks and the cycle time of 8356, only BBR_CNP 

achieves the optimal solution. For Arcus 2 with 111 tasks and the cycle time of 9400 and 10027, 

BBR_BNP, BBR_BNO, BBR_CNP and BBR_CNO achieve the optimal solutions by renumbering the 

tasks. Nevertheless, task renumbering produces worse results when solving Arcus 2 with 111 tasks and 

the cycle time of 11570. 

 

Table 4 Results on challenging instances 

Instance 
No. of 
tasks 

Cycle 
time 

LB 
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UB UB  UB UB UB UB UB UB UB UB 

Kilbridge 45 56 10 11 10 10 10 10 10 10 10 10 10 

Warnecke 58 54 31 31 31 31 31 31 31 31 31 31 31 

  62 26 27 26 26 26 26 26 26 26 26 26 

  65 25 25 25 25 25 25 25 25 25 25 25 

  68 23 24 23 23 23 23 23 23 23 23 23 

  71 22 23 22 22 22 22 22 22 22 22 22 

  82 19 20 19 19 19 19 19 19 19 19 19 

Tonge 70 160 22 23 22 22 22 22 22 22 22 22 22 

Tonge 
 

176 20 21 20 20 20 20 20 20 20 20 20 

Wee-mag 75 47 32 33 32 32 32 32 32 32 32 32 32 

Arcus 1 83 3786 21 22 21 21 21 21 21 21 21 21 21 

Mukherje 94 176 24 25 24 24 24 24 24 24 24 24 24 

Arcus 2 111 5785 26 27 27 27 27 27 27 27 27 27 27 

  6016 25 26 26 26 26 26 26 26 26 26 26 

  6267 24 25 25 25 25 25 25 25 25 25 25 

  6540 23 24 24 24 24 24 24 24 24 24 24 

  6837 22 23 23 23 23 23 23 23 23 23 23 

  7162 21 22 22 22 22 22 22 22 22 22 22 

  7520 20 21 21 21 21 21 21 21 21 21 21 

  7916 19 20 20 20 20 20 20 20 20 20 20 

  8356 18 19 19 19 19 19 19 19 19 18 19 

  8847 17 18 18 18 18 18 18 18 18 18 18 

  9400 16 17 17 17 17 17 17 16 16 16 16 

  10027 15 16 16 16 16 16 16 15 15 15 15 

  10743 14 15 15 14 14 14 14 14 14 14 14 

  11570 13 14 13 13 13 13 13 14 14 14 14 

Barthol2 148 85 50 51 50 50 50 50 50 50 50 50 50 

  89 48 49 48 48 48 48 48 48 48 48 48 
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  93 46 47 46 46 46 46 46 46 46 46 46 

  97 44 45 44 44 44 44 44 44 44 44 44 

Scholl 297 1394 50 51 50 50 50 50 50 50 50 50 50 

  1422 49 50 50 49 49 49 49 49 49 49 50 

  1515 46 47 46 46 46 46 46 46 46 46 46 

*Better than ULINO in bold.  

 

To sum up, all the implemented BBR methods produce promising results by outperforming ULINO and 

BPR. BBR_CNP is the best performer among these methods by producing slightly better results. 

Furthermore, renumbering the tasks helps the achievement of three optimal solutions with the cost of 

losing one optimal solution. This proves that renumbering the tasks is a good option for some 

unresolved challenging instances.  

 

4.2 Experimental results on new data set 

This section presents the results of the new dataset in Table 5 (see Appendix B for the detailed results), 

where the results by MHH are also included. In this table, #instances column denotes the number of 

instances, #OPT found denotes the number of achieved optimal solutions, #OPT verified is the number 

of achieved optimal solutions proved to be optimal, and RPD-Avg and RPD-Max are the average and 

maximum of RPD values.  

Table 5 Overall results on the new data set  

Method 
 

Instance 

 
Small-size  Medium-size  Large-size  Very large-size  Combined  

#instances 525 5250 525 525 6825 

MHH #OPT found 489 4126 357 336 5308 

 
#OPT verified - - - - - 

 
RPD-Avg 0.69 1.06 1.43 1.93 1.12 

 
RPD-Max 20.00 14.29 12.96 10.28 20.00 

BPR #OPT found 525 5241 481 346 6593 

 
#OPT verified 525 5236 478 346 6585 

 

RPD-Avg 0.00 0.01 0.26 1.72 0.16 

 
RPD-Max 0.00 4.35 5.77 9.88 9.88 

BBR_BSD #OPT found 525 5244 509 342 6620 

 
#OPT verified 525 5243 509 343 6620 

 
RPD-Avg 0.00 0.00 0.06 1.69 0.14 

 
RPD-Max 0.00 4.35 3.70 10.28 10.28 

BBR_BND #OPT found 525 5244 508 349 6626 

 

#OPT verified 525 5243 508 349 6625 

 
RPD-Avg 0.00 0.00 0.07 1.69 0.14 

 
RPD-Max 0.00 4.35 3.85 10.28 10.28 

BBR_CSD #OPT found 525 5245 510 343 6623 

 
#OPT verified 525 5245 510 343 6623 

 
RPD-Avg 0.00 0.00 0.06 1.19 0.10 

 
RPD-Max 0.00 4.35 3.70 7.31 7.31 

BBR_CND #OPT found 525 5245 510 349 6629 

 
#OPT verified 525 5244 510 349 6628 

 
RPD-Avg 0.00 0.00 0.06 1.18 0.10 

 
RPD-Max 0.00 4.35 3.70 7.51 7.51 

BBR_BNP #OPT found 525 5244 510 350 6629 

 
#OPT verified 525 5243 510 350 6628 

 
RPD-Avg 0.00 0.00 0.07 1.66 0.14 

 

RPD-Max 0.00 4.35 3.85 10.08 10.08 

BBR_BNO #OPT found 525 5244 510 347 6626 

 
#OPT verified 525 5243 509 347 6624 

 
RPD-Avg 0.00 0.00 0.07 1.65 0.14 

 
RPD-Max 0.00 4.35 3.85 9.88 9.88 

BBR_CNP #OPT found 525 5245 510 350 6630 

 
#OPT verified 525 5244 510 350 6629 

 

RPD-Avg 0.00 0.00 0.06 1.16 0.10 

 
RPD-Max 0.00 4.35 3.85 7.51 7.51 
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BBR_CNO #OPT found 525 5245 510 347 6627 

 
#OPT verified 525 5244 510 347 6626 

 
RPD-Avg 0.00 0.00 0.06 1.12 0.09 

 

RPD-Max 0.00 4.35 3.70 7.71 7.71 

*Best in bold. 

When observing the optimal solutions found in each set of instances (small-size, medium-size, 

large-size and very large-size), BPR has the same performance when solving small-size instances, 

slightly worse performance when solving medium-size instances, and much worse performance when 

solving large-size instances. Regarding the very large-size instances, BPR shows slightly better 

performance over BBR_BSD and BBR_CSD, and slightly worse performance than BBR_BND, 

BBR_CND, BBR_BNP, BBR_BNO, BBR_CNP and BBR_CNO. Regarding the overall achieved 

optimal solutions, MHH is the worst performer which is reasonable as MHH is only applied to achieve 

the upper bound for BBR algorithms. Still, MHH is quite effective heuristic method with 5308 optimal 

solutions, which is equivalent to over 77% of all tested instances. BPR is the second worst performer 

with 6593 found optimal solutions, and again all the implemented BBR algorithms produce better 

results. Specifically, BBR_CNP is the best performer with 6630 found optimal solutions, equivalent to 

the optimal solutions for over 97% of the test instances. BBR_CND and BBR_BNP are the second-best 

performers with 6629 found optimal solutions. With regard to overall average RPD, BBR_CNO is the 

best performer with an RPD-Avg of 0.09, and BBR_CNP is the second-best performer with an 

RPD-Avg of 0.10. 

Table 6 exhibits the comparison between BPR and BBR methods, where Better than BPR, Same to 

BPR and Worse than BPR denote the number of cases for which the corresponding BBR method 

produces better, the same or worse results. Regarding the overall number of Better than BPR, 

BBR_CNO is the best one with 221 better solutions, but it also obtains 10 worse solutions. BBR_CNP 

is the second best one with 217 better solutions and 8 worse solutions.  

 

Table 6 Comparison between BPR and BBR methods 

Method 
 

Instance 
 

 
Small-size  Medium-size  Large-size  Very large-size  Combined  

#instances 525 5250 525 525 6825 

BBR_BSD Better than BPR 0 4 40 80 124 

 

Same to BPR 525 5245 481 357 6608 

 
Worse than BPR 0 1 4 88 93 

BBR_BND Better than BPR 0 4 38 77 119 

 
Same to BPR 525 5245 483 361 6614 

 
Worse than BPR 0 1 4 87 92 

BBR_CSD Better than BPR 0 4 40 175 219 

 
Same to BPR 525 5246 481 342 6594 

 

Worse than BPR 0 0 4 8 12 

BBR_CND Better than BPR 0 4 40 174 218 

 
Same to BPR 525 5246 481 348 6600 

 
Worse than BPR 0 0 4 3 7 

BBR_BNP Better than BPR 0 4 39 78 121 

 
Same to BPR 525 5245 482 359 6611 

 
Worse than BPR 0 1 4 88 93 

BBR_BNO Better than BPR 0 4 39 83 126 

 
Same to BPR 525 5245 482 356 6608 

 
Worse than BPR 0 1 4 86 91 

BBR_CNP Better than BPR 0 4 41 172 217 

 
Same to BPR 525 5246 479 350 6600 

 
Worse than BPR 0 0 5 3 8 

BBR_CNO Better than BPR 0 4 41 176 221 

 
Same to BPR 525 5246 479 344 6594 

 
Worse than BPR 0 0 5 5 10 

*Best in bold. 
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The BBR methods using CBFS (BBR_CSD, BBR_CND, BBR_CNP and BBR_CNO) outperform 

those using BFS (BBR_BSD, BBR_BND, BBR_BNP and BBR_BNO) by achieving more than 200 

better results. In fact, the BBR methods with BFS or CBFS have similar performance when solving 

small-size, medium-size and large-size instances, whereas the applied search strategy distinguishes the 

performance of the implemented BBR methods clearly when solving the very large-size instances. This 

finding suggests that CBFS is more effective than BFS when solving very large-size instances. When 

comparing the value of Better than BPR and Worse than BPR values in the Combined column, the 

Better than BPR values are larger than Worse than BPR for all BBR methods, demonstrating the 

superiority of the proposed BBR methods over BPR.  

To evaluate the running times of the implemented methods, Table 7 presents the computational times 

for BPR and BBR algorithms. While the BBR methods consume more time than BPR when solving 

small-size cases, they consume much less time than BPR when solving medium-size, large-size and 

very large-size cases. BBR_CNP is the fastest methodology for large-size and very large-size instances 

and it has the smallest overall average running time. BBR_CND and BBR_BNP have the second and 

third smallest overall average running times, respectively. All the BBR algorithms have similar running 

time and the difference in the overall average running times is lower than one second. Nevertheless, the 

difference between BPR and BBR methods in the overall average running time is more than 10 seconds, 

and the proposed BBR algorithms are clearly faster to achieve optimal solutions.    

 

Table 7 Running times on new dataset 

Method 
 

Instance 
 

 
Small-size  Medium-size  Large-size  Very large-size  Combined  

#instances 525  5250  525  525  6825  

BPR Average (s) 0.16  3.54  60.54  253.99  26.93  

 
Standard deviation  0.22  29.32  146.63  188.54  97.83  

 
Minimum (s)  0.01  0.01  0.11  15.30  0.01  

 
Maximum (s) 2.22  501.24  509.82  532.69  532.69  

BBR_BSD Average (s) 0.24  0.99  20.79  175.85  15.90  

 
Standard deviation  0.38  18.30  93.74  238.66  86.41  

 

Minimum (s)  0.00  0.00  0.00  0.01  0.00  

 
Maximum (s) 1.42  501.38  502.62  501.90  502.62  

BBR_BND Average (s) 0.23  0.99  21.64  169.31  15.47  

 
Standard deviation  0.37  18.30  96.57  235.99  85.16  

 
Minimum (s)  0.00  0.00  0.00  0.02  0.00  

 
Maximum (s) 1.50  501.62  503.78  501.28  503.78  

BBR_CSD Average (s) 0.22  0.86  19.01  175.45  15.64  

 
Standard deviation  0.34  16.91  89.12  238.29  85.69  

 
Minimum (s)  0.00  0.00  0.00  0.02  0.00  

 
Maximum (s) 0.99  501.40  501.41  502.44  502.44  

BBR_CND Average (s) 0.21  0.86  19.19  170.74  15.29  

 
Standard deviation  0.33  16.94  89.00  235.92  84.50  

 
Minimum (s)  0.00  0.00  0.00  0.01  0.00  

 
Maximum (s) 0.96  501.38  501.37  502.06  502.06  

BBR_BNP Average (s) 0.23  0.99  20.21  168.56  15.30  

 
Standard deviation  0.37  18.30  92.64  235.52  84.62  

 
Minimum (s) 0.00  0.00  0.00  0.02  0.00  

 
Maximum (s) 1.49  501.53  501.38  501.27  501.53  

BBR_BNO Average (s) 0.23  1.00  20.34  171.04  15.51  

 
Standard deviation  0.37  18.30  93.52  236.74  85.30  

 
Minimum (s) 0.00  0.00  0.00  0.02  0.00  

 

Maximum (s) 1.48  501.66  502.51  501.19  502.51  

BBR_CNP Average (s) 0.22  0.86  18.87  169.99  15.21  

 
Standard deviation  0.35  16.94  88.58  235.40  84.25  

 
Minimum (s) 0.00  0.00  0.00  0.01  0.00  

 
Maximum (s) 1.06  501.52  501.39  502.00  502.00  
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BBR_CNO Average (s) 0.21  0.87  19.23  172.29  15.41  

 
Standard deviation  0.34  16.94  89.72  236.67  84.94  

 
Minimum (s) 0.00  0.00  0.00  0.01  0.00  

 

Maximum (s) 1.11  501.45  502.00  502.10  502.10  

*Best average time in bold.  

 

Table 8 exhibits the newly found optimal solutions or newly proved optimal solutions by BBR methods. 

All the instances have a cycle time fixed to 1,000. For the medium-size instance with 50 tasks, three 

optimal solutions are found by BBR methods for the first time. Moreover, five solutions are proved to 

be optimal for the first time. For large-size instances with 100 tasks, BBR methods achieve 36 new 

optimal solutions and prove the optimality for three cases for the first time.  

 

Table 8 Newly found or proved optimal solutions by implemented methods 
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UB  UB UB UB UB UB UB UB UB 

instance_n=50_255p3 28 28 28 28 28 28 28 28 28 28 
instance_n=50_254p9 30 31 30 30 30 30 30 30 30 30 

instance_n=50_115 26 27 26 26 26 26 26 26 26 26 
instance_n=50_107p9 27 28 27 27 27 27 27 27 27 27 
instance_n=50_107p8 28 28 28 28 28 28 28 28 28 28 
instance_n=50_107p5 28 28 28 28 28 28 28 28 28 28 
instance_n=50_105p9 24 24 24 24 24 24 24 24 24 24 
instance_n=50_104p6 26 26 26 26 26 26 26 26 26 26 
instance_n=100_525 55 58 55 55 55 55 55 55 55 55 
instance_n=100_524 53 55 53 53 53 53 53 53 53 53 
instance_n=100_523 52 53 52 52 52 52 52 52 52 52 

instance_n=100_522 52 55 52 52 52 52 52 52 52 52 
instance_n=100_520 54 55 54 54 54 54 54 54 54 54 
instance_n=100_519 57 58 57 57 57 57 57 57 57 57 
instance_n=100_518 52 54 52 53 52 52 52 52 52 52 
instance_n=100_515 57 58 57 57 57 57 57 57 57 57 
instance_n=100_514 52 54 52 52 52 52 52 52 52 52 
instance_n=100_513 54 57 54 54 54 54 54 54 54 54 
instance_n=100_512 58 59 58 58 58 58 58 58 58 58 

instance_n=100_510 52 54 52 52 52 52 52 52 52 52 
instance_n=100_509 53 55 53 53 53 53 53 53 53 53 
instance_n=100_508 52 55 52 52 52 52 52 52 52 52 
instance_n=100_507 55 55 55 55 55 55 55 55 55 55 
instance_n=100_506 53 55 53 53 53 53 53 53 53 53 
instance_n=100_505 54 57 54 54 54 54 54 54 54 54 
instance_n=100_504 55 58 56 56 55 55 56 56 55 55 
instance_n=100_503 57 58 57 57 57 57 57 57 57 57 

instance_n=100_502 61 62 61 61 61 61 61 61 61 61 
instance_n=100_501 59 60 59 59 59 59 59 59 59 59 
instance_n=100_472 23 23 23 23 23 23 23 23 23 23 
instance_n=100_463 25 25 25 25 25 25 25 25 25 25 
instance_n=100_450 52 53 53 53 52 52 53 53 52 52 
instance_n=100_448 54 55 54 54 54 54 54 54 54 54 
instance_n=100_445 54 55 54 54 54 54 54 54 54 54 
instance_n=100_440 51 52 51 51 51 51 51 51 51 51 

instance_n=100_438 52 53 52 52 52 52 52 52 52 52 
instance_n=100_436 49 50 49 49 49 49 49 49 49 49 
instance_n=100_426 58 60 58 58 59 59 58 58 59 59 
instance_n=100_296 53 54 54 54 54 54 53 53 53 53 
instance_n=100_294 54 55 54 54 54 54 54 54 54 54 
instance_n=100_280 51 53 52 52 51 51 52 52 51 51 
instance_n=100_148 51 52 51 51 51 51 51 51 51 51 
instance_n=100_144 47 48 47 47 47 47 47 47 47 47 
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instance_n=100_143 51 52 51 51 51 51 51 51 51 51 
instance_n=100_135 53 54 53 53 54 54 53 53 54 54 
instance_n=100_130 53 54 53 53 53 53 53 53 53 53 
instance_n=100_126 50 52 50 50 50 50 50 50 50 50 
instance_n=1000_61 229 230 230 229 230 229 229 229 229 229 

instance_n=1000_516 229 230 229 229 229 229 229 229 229 229 
instance_n=1000_503 224 225 224 224 224 224 224 224 224 224 
instance_n=1000_278 220 221 220 220 220 220 220 220 220 220 

 

Regarding the very large-size instance with 1,000 tasks, BBR methods achieve four new optimal 

solutions. Among all the BBR methods, BBR_BSD and BBR_BND achieve 38 new optimal solutions, 

BBR_CSD achieves 39 new optimal solutions; BBR_CND, BBR_BNP and BBR_BNO achieve 40 

new optimal solutions; and BBR_CNP and BBR_CNO achieve 41 new optimal solutions. Clearly, 

BBR_CNP and BBR_CNO are the best performers regarding the number of newly found optimal 

solutions. 

In summary, all the BBR methods are capable to achieve better results than the published BPR. 

BBR_CNP is the best performer regarding the number of achieved optimal solutions. CBFS 

outperforms the BFS by a significant margin when solving very large-size instances. Again, 

renumbering the tasks helps achieve more optimal solutions than the lost optimal solutions, indicating 

that renumbering the tasks is worth trying and shows slightly better performance. 

 

5. Conclusions and future research 

This research presented a BBR algorithm to solve UALBP. The BBR algorithm applies the CBFS as 

the search strategy and remembers all the searched sub-problems to eliminate redundant sub-problems. 

It also proposes several improvements in solving large-size problems: two new dominance rules, 

renumbering the tasks when generating the station loads, new criterion to select the most promising 

sub-problem and limiting the number of sub-problems at each depth. A comprehensive study has been 

carried out where eight BBR methods with different configurations were evaluated and compared with 

the two current best exact algorithms on Scholl’s 269 benchmark instances and the new 6825 instances.  

Computational results demonstrated that the tested BBR methodologies outperform the ULINO and 

BPR algorithms by achieving many new optimal solutions or upper bounds. The proposed BBR 

method achieved 259 optimal solutions for Scholl’s well-known 269 benchmark problems, where 

ULINO and BPR algorithm found 238 and 255 optimal solutions, respectively. The proposed method 

achieved optimality for slightly over 97% of the problems in the new dataset where BPR algorithm 

achieves the optimality for over 96% of tested problems. Specifically, one Scholl’s instance (Scholl 297 

with a cycle time of 1422), whose optimal solution was not known for almost 20 years, is solved 

optimally for the first time. The proposed BBR method also finds 41 new optimal solutions for the new 

dataset.  

As the search space of UALBP is much larger and there are many sub-problems at each depth, future 

research might focus on developing various pruning rules and dominance rules to reduce the search 

space. Another problem when utilizing exact methods is that they might terminate due to out of 

memory problems in solving large-size instances, and it is interesting to develop methods to optimize 

memory usage and reduce the utilized computer memory to store the sub-problems. Another approach 

is testing the most promising station loads while limiting the number of generated station loads, which 

can also help increase the search speed. As many optimization objectives are involved in real world 

systems, future researches might extend the proposed exact methods or hybrid exact methods with 

multi-objective metaheuristics to solve multi-objective optimization problems. Another research 

avenue is extending the proposed methods to other variants of assembly line balancing problems, 
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including assembly line balancing with sequence-dependent setup times, parallel assembly line 

balancing, two-sided assembly line balancing, and robotic assembly line balancing.  

 

Appendix A. The correctness and compatibility of the dominance rules 

Lemma 1. For a given partial solution, a sub-problem containing this partial solution can be pruned if 1) 

there is a task i assigned to the entrance side of the last station and an unallocated task h such that task i 

and task h have no precedence relationship,       and   
    

 , and 2) task h can be assigned to the 

entrance side to replace task i without violation of cycle time constraint and precedence relationship 

constraint. For a given partial solution, a sub-problem containing this partial solution can be pruned if 1) 

there is a task i assigned to the exit side of the last station and an unallocated task h such that task i and 

task h have no precedence relationship,       and   
    

 , and 2) task h can be assigned to the exit 

side to replace task i without the violation of cycle time constraint and precedence relationship 

constraint. 

Proof 1. Let                            and          be a feasible solution. There 

must be one solution by exchanging the position of task i and task h:                     

     and          when 1) task i is assigned to the entrance side, task i and task h have no 

precedence relationship,       and   
    

 , and 2) task h can be assigned to the entrance side to 

replace task i without the violation of cycle time constraint and precedence relationship constraint. The 

two solutions X and Y have the same task assignment except the exchanged position of task i and task h, 

and clearly the two solutions have the same station number. The same situation also applies to the 

backward direction. Hence, deleting the solution X by pruning its sub-problem using the modified 

extended Jackson rule will not prevent the discovery of the optimal solution.  

 

Lemma 2. The current sub-problem can be pruned if 1) the tasks on the entrance side of the last station 

in a partial solution have no successors, 2) the tasks on the exit side of the last station in a partial 

solution have no successors, 3) and there exists an unassigned task which can be allocated to the 

entrance side and has at least one successor or can be allocated to the exit side and has at least one 

predecessor.  

Proof 2. Let                    be a feasible solution,     and     are the task sets on 

the entrance side and exit side of station j and      and     are the task sets on the entrance side and 

exit side of station k in this solution. There must be one solution by exchanging the position of task set 

    and     with task set     and    :                                   if 1) 

the tasks in     have no successors, 2) the tasks in     have no predecessors, 3) and there exists an 

unassigned task in     with at least one successor or in     with at least one predecessor. The two 

solutions X and Y have the same task assignment except the exchanged position of tasks in station j and 

station k, and clearly the two solutions have the same station number. Hence, deleting the solution X by 

pruning its sub-problem using no-successors and no-predecessors rule will not prevent the discovery of 

the optimal solution.  

 

The compatibility of the rules is studied here, and clearly there is no conflict between maximum load 

rule and others and between memory-based dominance rule and others (see Morrison, Sewell [12] for 

details). Hence, this section focuses on the compatibility of modified extended Jackson rule (MEJR) 

and no-successors and no-predecessors rule (NSPR) following Morrison, Sewell [12].  

 

Lemma 3. Let X, Y and Z be three sub-problems in one search tree. If X is dominated by Y using 
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MEJR and Y is dominated by Z using NSPR, X is also dominated by Z using NSPR.  

Proof. Let X                      , Y   ′  ′                ′  and X is dominated 

by Y using MEJR. There must be     ,     ′,      ,   
    

  and   
′

              

when both task i and task h are allocated to the entrance side. Otherwise, there must be     , 

    ′,      ,   
    

  and   
′

              when both task i and task h are allocated to 

the exit side. If these two tasks are allocated to the entrance side,   
    and hence   

    as well. 

Then, the tasks in    also have no successor and X is dominated by Z using NSPR. If these two tasks 

are allocated to the exit side,   
    and hence   

    as well. Clearly, the tasks in    also have 

no predecessors and X is dominated by Z using NSPR. 

Suppose that a set of sub-problems are dominated by others using MEJR and NSPR. There must be 

some sub-problems X, pruned by MEJR but not NSPR, and some sub-problems Y, which dominate X. 

The compatibility is violated when the sub-problems to be pruned only by one dominance rule, and 

both MEJR and NSPR take effect independently. In other words, the compatibility is violated when 

there is a pair of X and Y where X is pruned only by MEJR and Y is pruned only by NSPR. As implied 

by Lemma 3, this situation cannot happen and thus the MEJR and NSPR are compatible for UALBP.  

 

Appendix B. Detailed results 

The detailed results obtained by the tested algorithms are publicly available at 

http://ikucukkoc.baun.edu.tr/datasets/CAIE_BBR_Results.zip.  
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Highlights 

1. Branch, bound and remember algorithm is improved for UALBP.  

2. Two new dominance rules are developed and proved.  

3. A comprehensive study is carried out to test eight BBR methods. 

4. BBR methods outperform two current best exact methods, ULINO and BPR. 

5. New optimal solutions and upper bounds are achieved for tested benchmarks.  
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Graphical Abstract 
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Algorithm 1: Branch, bound and remember algorithm 

% Phase I 

Step 1: Achieve UB by modified Hoffman heuristic.  

% End of Phase I 

Step 2: Obtain global lower bound at the root using                             . 

Step 3: If          , terminate; otherwise, go to Step 4. 

% Phase II 

Step 4: Run cyclic best-first search strategy and update UB when smaller UB is achieved. If the 

termination criterion is satisfied, terminate.  

% End of Phase II 

Step 5: If           or termination criterion is satisfied, terminate; otherwise, go to Step 6. 

% Phase III 

Step 6: Run breadth-first search strategy and update UB when smaller UB is achieved. If    

       or termination criterion is satisfied, terminate this procedure. 

% End of Phase III 

 

 

 


